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ANNUAL REPORT ON REQUEST NO. R-05-030-001 FOR THE PERIOD 1 FEBRUARY 1965 
THROUGH 31 JANUARY 1966 

(1)  t h e  influence of t h e  in te r face  on t h e  e p i t a x i a l  growth of t h i n  
films and 

(2) t h e  character izat ion of surfaces .  

The work f a l l i n g  i n t o  category (1) can be divided up i n  t h e  following 
way : 

( la )  theo re t i ca l  work on i n t e r f a c i a l  energy and nucleation; 

( l b )  t h e  growth of  f.c.c. metals on a l k a l i  hal ides  i n  ul t rahigh 
vacuum (UHV) using UHV grazing incidence electron d i f f r ac t ion ,  mass spectro- 
metry, conventional e lec t ron  microscopy and transmission e lec t ron  d i f f r ac t ion  
as experimental tools; 

(IC) t h e  influence of r e s i d u a l  gases and of t he  electron beam on nuclea- 
t i o n  as studied by grazing incidence electron d i f f r ac t ion ,  mass spectrometry, 
and l i g h t  microscopy; and 

( l a )  t h e  i n i t i a l  growth of m e t a l  films on m e t a l  and semiconductor s ing le  
c r y s t a l  surfaces i n  UHV as studied by low energy e lec t ron  d i f f r ac t ion  (LEED). 

The work f a l l i n g  in to  category (2 )  w a s  concerned with t h e  preparation 
and character izat ion of clean s i n g l e  c r y s t a l  surfaces and t h e i r  i n t e rac t ion  
with gases. 
t h e o r e t i c a l  work on low energy electron sca t t e r ing  suppor t ed the  LEED experi- 
ments. 

Experimental t o o l s  used were LEED and mass-spectrometry; 

11. THEORETICAL WORK ON INTERFACIAL ENERGY AND NUCLEATION 

This work w a s  st imulated by Harsdorff 's  experiments [Sol id  S t a t e  Comm. I-, 
218 (1963); 2, 133 (1964)] which had revealed an osc i l l a to ry  temperature 
dependence of t h e  perfect ion o f  the  or ien ta t ion  of f .c.c.  metals on a l k a l i  
halides.  
o sc i l l a to ry  dependence of t h e  i n t e r f a c i a l  energy upon in t e r f ace  s i ze .  This 
suggested appl icat ion of t h e  only nucleation theory which includes t h e  s i z e  
and shape dependence of t h e  in t e r f ac i a l  energy [Bauer, 2. Kristal logr .  110, 
372, 395 (1958)l t o  Harsdorff 's experiments. While t h e  programming f o r  t h e  
IBM 7040 w a s  going on, experiments were reported [Adam, Harsdorff, Z. 
Naturforsch. 489 (1965)] which indicated t h a t  t h e  osc i l l a to ry  behavior 

Such a n  osc i l l a to ry  dependence is t o  be expected on t h e  basis of t h e  
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mentioned above w a s  probably not simply r e l a t ed  t o  t h e  s i z e  of t he  in te r -  
face but w a s  s t rongly related t o  water vapor evolution from a l k a l i  hal ides .  
The programming w a s  therefore stopped and after we had confirmed t h e  water 
evolution t h e  theo re t i ca l  work w a s  postponed u n t i l  t h e  beginning of our 
own planned quant i ta t ive  nucleation work. 

111. GROWTH OF f.c.c. METALS ON ALKALI HALIDES I N  ULTRAHIGH VACUUM 

This work w a s  stimulated by t h e  experiments of Ino, Ogawa and Watanabe 
[J. Phys. SOC. Japan 19, 881 (1964)] which indicated t h a t  t h e  growth of 
c e r t a i n  f.c.c. metals i n  UHV on N a C l  is qu i t e  d i f f e ren t  f r o m t h e  growth in 

If meaningful experiments on t h e  influence of t h e  in t e r f ace  on t h e  epitaxial .  
growth are t o  be done t h e  phenomena observed by Ino e t  al. have t o  be under- 
stood f irst .  
performed which allowed t h e  observation of t h e  f i l m  growth i n  UHV by grazing 
incidence electron d i f f r ac t ion .  
K I ,  Ag on KC1,  and A 1  on N a C 1 ,  i .e. three f .c .c .  m e t a l s  with approximately 
i d e n t i c a l  l a t t i c e  constants. 
w e r e  s tud ied  by e lec t ron  microscopy and transmission electron d i f f r ac t ion ;  
i n  t h i s  p a r t  of t h e  experiment our work on Au on N a C l  overlapped with t h a t  
of Matthews e t  al .  [Appl. Phys. Letters >-, 166 (19641, 1, 131 (1965); Phi l .  
Mag. - 11, 1223 (1965), 12,  1143 (196511, whose work w a s  done independently of 
ours. 
our in t e rp re t a t ion  is i n  important aspects d i f f e ren t  from t h e i r s .  This is 
mainly due t o  t h e  larger experimental material ava i lab le  t o  us,  which shows 
t h a t  t h e  growth of f.c.c. metals on clean a l k a l i  ha l ide  surfaces  i n  UHV i s  
very pecul ia r  for  each film-substrate p a i r ,  s o  t h a t  from a l i m i t e d  number of 
experiments no general conclusions can be drawn as w a s  done by Matthews. 
Some of t h e  differences between Matthews and our in t e rp re t a t ion  are discussed 
i n  Enclosure (11, a f u l l  report  of our experimental work and its interpre-  
t a t i o n  is  i n  preparation f o r  publication; some of t h e  r e s u l t s  obtained before 
September 1, 1965 have been included i n  Encl. (1) of t h e  Third Quarterly 
Progress Report. The r e s u l t s  obtained provide a fundamentally new ins ight  
i n t o  t h e  influence of t h e  in t e r f ace  and t h e  surface of t he  growing c r y s t a l s  
on e p i t a x i a l  growth and provide t h e  bas i s  f o r  fu ture  quant i ta t ive  work on 
e p i t a x i a l  nucleation. 

orznarJ.. --e r a L ~ ~  .-- a& th& the eonditfon ef t h e  k C l . s u r f a c e  vas qui te  c r i t i c a l .  

I n  order t o  achieve such an understanding experiments were 

Materials investigated w e r e  Au on N a C l ,  KC1,  

A f t e r  removal from t h e  UHV system the  films 

AlthougB our experimental r e su l t s  agree qua l i t a t ive ly  with t h e i r s ,  

I V .  THE INFLUENCE OF RESIDUAL GASES AND OF THE ELECTRON BEAM ON NUCLEATION 

The work i n  t h i s  area w a s  concentrated.on t h e  nucleation of N a C l  on 
N a C 1 ,  but included a l so  observations made i n  t h e  study of t h e  growth of f.c.c. 
metals on a l k a l i  hal ides  as described i n  111. Some o f t h e  r e s u l t s  obtained 
f o r  N a C l  on N a C l  have been reported i n  Encl. (1) of t h e  Second Quarterly 
Report, ind ica t ing  a profound influence of ce r t a in  gases on nucleation. Work 
t o  understand the  mechanism is s t i l l  i n  progress. 
of N a C l  (100) and (110) surfaces i n  gases and studying t h e i r  surface s t ruc tu re  
and t h e  gas evolution from such c rys t a l s ,  ( 2 )  experiments on t h e  growth of 
N a C l  cleaved i n  UHV, and (3)  theo re t i ca l  geometric considerations of t h e  
possible in t e r f ace  s t ruc tures  leading t o  t h e  observed or ien ta t ions .  

It involves (1)  annealing 
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The e lec t ron  beam has a l s o  a profound influence on t h e  growth of 
f .c.c.  metals on a l k a l i  ha l ides ,  both on t h e  p a r t i c l e  density and p a r t i c l e  
or ien ta t ion .  For example Au cannot be grown as a s ing le  c r y s t a l  f i l m  on 
N a C l  cleaved i n  UHV, however if the surface is bombarded with electrons 
immediately before o r  during evaporation t h e  condensation coef f ic ien t  i s  
increased considerably and a s ingle  c r y s t a l  f i l m  i s  formed. The beam 
influence varies considerably w i t h  t h e  film-substrate combination and t h e  

w i l l  be reported i n  t h e  publication i n  preparation mentioned i n  111. 
on...ai+inn i n a i n e + + m ~  +he -,..-.inV:+-. -e +L,. n..+..ilo 
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V. THE INITIAL GROWTH OF METAL FILMS ON METAL SET4ICONDUCTOR SINGLE 
CHYbTMS 

The purpose of these  invest igat ions w a s  threefold:  (1) t o  check t h e  
v a l i d i t y  range of a theory o f  t h e  growth mode of very t h i n  f i lms,  i . e .  of 
t h e  problem of two-dimensional versus three-dimensional nucleation [ Bauer , 
Z. Kr i s ta l logr .  110, 372 (1958)l; (2 )  t o  obtain a n  understanding of t he  
in t e r f ace  between two c rys t a l s ;  and ( 3 )  t o  co l l ec t  experience f o r  t h e  forma- 
t i o n  of complex metal-oxygen surface s t ruc tu re  as they are intended t o  be 
used later i n  t h e  study of t h e  re la t ion  between electron emission and the  
s t ruc tu re  of surface films. The following systems have been investigated: 
Ag and Au on a {110) plane of W (see F i r s t  Quarter ly  Report), Ag on ill11 
and (100) planes of Cu (see  Second Quarterly Report), F% on t h e  (110) plane 
of W and Ag and Au on t h e  (111) plane of S i  (see Third Quarterly Report). 
Some of t h e  major findings are: (1) t h e  existence of one-dimensionally 
s t r a ined  monolayers (Pb on W ) ,  ( 2 )  t h e  formation of ordered in t e r f ace  alloys 
of m e t a l s  not miscible i n  t h e  bulk (Ag on Cu) , ( 3 )  t h e  strong, influence of a 
chemisorbed gas l aye r  on nucleation ( A g  and Au on W) , and (4) the  consider- 
able differences i n  t h e  s t ruc tu re  of surface f i l m s  of metals with nearly 
i d e n t i c a l  l a t t i c e  constants and similar e lec t ronic  s t ruc tu re  (Au and Ag on Si). 
Although w e  have reported some of the  data at  conferences w e  consider t h e i r  
publication as premature u n t i l  more quant i ta t ive  experiments are done and 
t h e  in t e rp re t a t ion  techniques i n  l o w  energy e lec t ron  d i f f r ac t ion  are developed 
be t t e r .  

V I .  CHARACTERIZATION O F  SINGLE CRYSTAL SURFACES 

Most of t h e  low energy electron d i f f r ac t ion  work w a s  concerned with 
t h e  techniques t o  produce s ing le  c rys t a l  surfaces ,  e i t h e r  clean o r  with w e l l  
defined adsorbed layers .  
quant i ta t ive  theory of l o w  enerQy electron d i f f rac t ion .  
dealt with t h e  following surfaces: N i  {ill?, (1001, {112), C u  { loo) ,  {ill), 
Au {loo), W (110), S i  (1111, NaCl (100). The s t ruc tu re  of t h e  surfaces 
w a s  studied as function of heat treatment, ion bombardment and i n  s i t u  
react ion with 02, CH4,  CO and D2. The gas composition and the  desorption 
products from t h e  surfaces were s tudied  w i t h  a quadrupole mass-spectrometer 
which is i n  l i n e  of s igh t  of t h e  c rys ta l s .  Some o f t h e  r e s u l t s  have been 
reported at a conference (see p. 51, many of them are s t i l l  waiting for 
quant i ta t ive  evaluation. 
t u r e s  found on Cu, espec ia l ly  t h e  epitaxy of CuO on Cu, ( 2 )  t h e  problem of 

Simultaneously efforts were made t o  develop a 
The experiments 

The l a t t e r  include (1) t h e  various surface s t ruc-  
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t h e  nature of t h e  chemisorbed oxygen l aye r  on N i ,  i .e .  t h e  queStion whether 
t h e  layer is  mixed (consis t ing of N i  and 0 atoms) o r  unmixed, two- o r  three- 
dimensional, (3) t h e  nature of t h e  equilibrium surface s t ruc tu re  of t h e  
Au (100) and t h e  S i  (111) plane as obtained after high temperature annealing, 
(4 )  t h e  surface s t ruc tu re  on t h e  W (110) plane, ( 5 )  t h e  s t ruc tu re  and orien- 
t a t i o n  of t h e  react ion products of t h e  W (110) plane with 02,  CO, H20, C H 4 ,  
and ( 6 )  t h e  desorption process of layers  formed on t h e  N a C l  (100) plane i n  

surfaces ,  especially of W, W + 0, W + CO which are needed i n  t h e  second p a r t  
of t h e  problem, are now well under control .  

eir. A!? a_ resEl+ cf invPst.igEtic?ns the methc;cs te ~rc?f31.CP V P E  t3ofine!? 

..... xne main d i i f i c u i t y  i n  t h e  quant i ta t ive  evaiuation of LEE33 observations 
is  t h e  l ack  of a proper theory of l o w  energy electron d i f f r ac t ion .  A first 
s t e p  t o  such a theory for  c rys t a l s  is a theory f o r  t h e  sca t t e r ing  of slow 
e lec t rons  by atoms. The theo re t i ca l  work on t h i s  subject has s t ead i ly  pro- 
gressed. Because of our i n t e r e s t  i n  c rys t a l s  consis t ing of heavy atoms t h e  
I M  program has been extended t o  be appl icable  t o  heavy atoms. 
s ign i f i can t  result obtained i s  t h e  f ac t  t h a t  contrary t o  w e l l  e s tab l i shed  
opinion t h e  sca t t e r ing  of slow electrons cannot be described by nonre l a t iv i s t i c  
quantum mechanics, but requires  r e l a t i v i s t i c  quantum mechanics (see Ehcl. (2)  ). 

A highly 
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The Growth of Single Crystal Films Free of Impurities 

E. Bauer, A. K. Green, and K. M. Kunz 

N66-20068 Michelson Laboratory, China Lake, Cal i fornia  93555 

1. i n  many p'hysicai e x p e r i m e n t s  anii iiechnicai appiicuiiorm c r i i r i  r i b  

are required which are both s ingle  c rys t a l l i ne  and free of impurities. 

Recent experimentsL-" ind ica te  tha t  the two requirements are frequently 

incompatible, i.e. tha t  impurit ies are necessary i n  order t o  obtain s ing le  

c r y s t a l  films by epitaxy. The shuw t h a t  continuous films 

w i t h  good s ing le  c rys t a l  orientation (formed i n  t h e  presence of cer ta in  

impuri t ies)  

q n  

have i n  t h e  i n i t i a l  stage of formation a much higher p a r t i c l e  

density than films w i t h  poor s ingle  c r y s t a l  o r ien ta t ion  

similar conditions i n  t h e  absence of impuri t ies) .  

observations Matthews 

(formed under 

On t he  basis of these 

9 has suggested a technique f o r  growing s ingle  c rys t a l  

films of fcc  m e t a l s  on clean a lka l i  hal ide surfaces i n  ultrahigh vacuum. 

This technique which he demmstrated f o r  t h e  growth of Au on lac1 should 

lead t o  films free of impurit ies.  Its basic  idea is t o  deposit a very t h i n  

l aye r  (- 20 A )  of t he  metal at a very high rate (- 1000 A/sec) immediately 
0 0 

after cleaving t h e  c rys t a l  at  350°C i n  ul t rahigh vacuum. The high deposi- 

t i o n  rate is used t o  obtain a high p a r t i c l e  density and consequently ear ly  

coalescence w h i c h  is considered by Matthews t o  be es sen t i a l  f o r  the formation 

of a s ing le  c rys t a l  film. The deposition immediately after cleaving ensures 

tha t  t he  surface does not get contaminated by t h e  res idual  gas. 

purpose of t h i s  let ter t o  show t ha t  Matthew's suggested procedure is ne i ther  

It is  t h e  

su f f i c i en t  nor necessary fo r  obtaining s ing le  c rys t a l  films f r e e  of impurit ies;  

t o  propose a simpler proczdure t o  achieve t h i s  goal and t o  point out t he  

l i m i t a t  ions of both. 
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The procedure used i n  Matthews technique i s  not su f f i c i en t  f o r  two 

reasons. F i r s t ,  at high evaporation rates Au evolves a la rge  amount of 

gas which can be incorporated i n t o  t h e  growing f i l m .  This w i l l  lead t o  

e p i t a x i a l  growth i n  a similar way as i n  the  experiments done i n  unbaked 

yzc~v~iz evc+omc -a I ---. l-335 Aecp"sp cf epmac.. ymlt.ll+ic-ll E .l_isclJs3icn nf +.he 

arguments f o r  and against t h i s  premise w i l l  be given elsewhere. 

reason is as follows: 

ora t ion  ensures t h a t  t h e  surface w i l l  not be contaminated from t h e  vacuum, 

it can be strongly contaminated from t h e  bulk of t h e  c rys ta l .  This can be 

concluded from several  observations. 

minima i n  the  perfection of t h e  orientation of fcc m e t a l  films grown i n  a 

The second 

Aitnougn cieaving during o r  immeeately be€ore evap- 

Harsdorff 2'10 has found maxima and 

. 
vacuum of about h.lO-' t o r r  on a l k a l i  halides as a function of temperature. 

H e  assumed t h a t  t h e  a l k a l i  hal ide surfaces w e r e  covered w i t h  severa l  

adsorbed water layers  and a t t r ibu ted  the  m a x i m a  t o  t he  removal of successive 

water layers .  

eter observations ,I1 which showed H20 "desorption" peaks at temperatures 

which could be re la ted  t o  those at which the  perfection of the  or ien ta t ion  

T h i s  in te rpre ta t ion  seemed t o  be supported by mass spectrom- 

6 had i ts  m a x i m a .  

surface layers  but result from bulk impurit ies which reach t h e  surface very 

rapidly i n  cer ta in  temperature regions by a mechanism t o  be described else- 

where. 

Harsdorffts2 'lo observations show t h a t  impurit ies i n  t h e  bulk influence t h e  

f i lm orientat ion even i n  a vacuum of t h e  order of 10 t o r r .  Therefore, i n  

a baked ultrahigh vacuum system where t h e  water p a r t i a l  pressure is  very low 

(e.g. 

(at  least i n  the temperature regions of s t rong H20 evolution),  t o  a s t ronger  

However w e  have shown t h a t  t h e  H20 peaks a re  not due t o  

I 2  H20 bursts  have also been observed upon cleaving of NaC1. 

-6 

t o r r ) ,  evaporation during o r  immediately a f t e r  cleaving leads, 
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impurity influence on the  f i lm growth than evaporation onto a surface 

which had some chance t o  outgas between cleaving and evaporation. 

That the procedure used by Matthews is  not necessary follows from 

the  following observation which we have made i n  many ul t rahigh vacuum 

evaporations of Au: 

KC1 cleaved i n  ul t rahigh vacuum, both films have i n i t i a l l y  t h e  same small 

number of nuclei  (as compared t o  a surface cleaved i n  air), with roughly 

the same orientat ions.  However, w h i l e  t h e  continuous films of Au on N a C l  

consis t  of c rys t a l s  w i t h  t h e i r  flll) planes p a r a l l e l  t o  t he  subs t ra te ,  

those on K C 1  have a perfect s ing le  c rys t a l  o r ien ta t ion  similar t o  tha t  i n  

Au films on surfaces cleaved i n  air. This shows t h a t  ne i ther  a high density 

When Au is evaporated simuitaneously onto ir'aci &in6 

of nuclei  nor an air-contaminated surface nor reac t ive  res idua l  gases are 

necessary i n  order t o  obtain a s ingle  c r y s t a l  film. 

t h e  lowest number of microtwins or s tacking faults and dis locat ions which 

w e  have obtained w a s  grown on a KC1 surface cleaved a t  4.10 

and deposited 20 min later at 6.10 t o r r  at 360'~ (see Fig. 1). The trans-  

mission d i f f r ac t ion  pa t te rn  of t h i s  film is  a perfect  Laue pa t te rn  w i t h  weak 

Kikuchi bands. Th i s  perfection o f t h e  s ing le  crystal  or ien ta t ion  can not be 

ascribed t o  H20 evolution as discussed above f o r  N a C 1 ,  because K C l  evolves 

much less H20 from t h e  bulk than NaC1, and none at a l l  at the  deposit ion 

temperature. KC1 surfaces  cleaved i n  air  could be cleaned by heating t o  

45OoC similar t o  N a C l  surfaces.  

K C 1  i n  ul t rahigh vacuum and s implif ies  t h e  preparation of s ing le  c r y s t a l  Au 

I n  f a c t ,  t h e  film w i t h  

-8 t o r r  at i80°c 
-8 

T h i s  el iminates the  necessi ty  of cleaving 

films free of impurit ies.  

It should be pointed out t h a t  the  "impurity free" Au s ingle  c r y s t a l  

films may be reasonably free of impurit ies i n  the  bulk, but there are s t rong  
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indicat ions t h a t  t h e i r  sur faces-are  not clean. In s i t u  ultrahigh vacuum 

re f l ec t ion  electron d i f f rac t ion  results show t h a t  beginning w i t h  a 

p a r t i a l l y  coherent s ing le  c r y s t a l  film of Au a superstructure develops 

(Fig. 2 )  which is  associated with an impurity-gold compound. This a l so  

has been founci by l o w  exiergg e l = c ~ - u d  i i i ~ i - 6 c $ i + i i , ~ 3 * ~ ~  a ~ i u  e-2 uaa &--- Y'CGII 

a t t r ibu ted  to an alkali-gold ~0nrpound.l~ 

t h e  observations indicate  t h a t  t h e  growth of s ing le  c rys t a l  films on a l k a l i  

hal ides  not only depends c r i t i c a l l y  upon t h e  residual  gas pressure and 

composition, the  h is tory  of t h e  surface and t h e  impurity content i n  t he  

bulk of t h e  subs t ra te ,  but is also strongly influenced by in te r face  reac- 

t i ons  between f i l m  and subs t ra te  not known previously. 

If t h i s  in te rpre ta t ion  is  cor rec t ,  

The work was supported i n  past by t h e  National Aeronautics and Space 

Administration under Grant Bo. R-05-030-001. 
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Figure  1. Transmission electron micrograph  of g o l d  film 
described in text. Magnification X20.GOO. 



F i g u r e  2.  I n  s i t u  UHV r e f l e c t i o n  e l e c t r o n  d i f f r a c t i o n  p a t t e r n  
o f  g o l d  f i l m  d e s c r i b e d  i n  t e x t .  <110>Azimuth. 



The Importance of Rela t iv i s t i c  Effects 
of Slow Electrons 

I-  , . 

i n  the Scat ter ing 

H. N. Browne and E. Bauer 
Michelson Laboratory, China Lake, Cal i fornia  93557 

In t he  past it has been generally assumed that the t o t a l  and differ- 

c n t i a t  scattering cross sectfaxi f'~r s l m  e lectr~ns  c o d 6  be c d c u l a t e d  

using nonre l a t iv i s t i c  quantum mechanics. It is  the  purpose o f t h i s  let ter 

t o  denonstrate t h a t  t h i s  assumption is erroneous and t h a t  r e l a t i v i s t i c  

e f f e c t s  play a very important role at low e lec t ron  energies,  at least in 

t he  sc-3ttering by heavy atoms. 

.n order t o  simplify the theo re t i ca l  treatment we prove our statement 

i n  t h e  static cen t r a l  f ield approximation, i.e. w e  neglect spin-spin 

cor re la t ion  ' (exchange) and charge--@;e cor re la t ion  (polar iza t ion)  between 

the  free and t h e  atomic electrons.  In t h i s  approximation t h e  Qth p a r t i a l  

wave FQ(r9 in t he  p a r t i a l  wave expansion 

from tne 'following equations ( i n  Hartree 

c - 
FE + Lk2 + 2V(r) - FQ r 

in t h e  nonre l a t iv i s t i c  treatment and 

of the  sca t t e red  wave is obtained 

atomic un i t s ) :  

= o  

i n  t:. r e l a t i v i s t i c  treatment. 

1 

E n d .  (2) 



2 z ( r )  Here k is the  k ine t i c  energy measured i n  un i t s  of 13.6 eV, V(r) = - r 
is the  poten t ia l  energy of t h e  electron i n  t h e  f i e ld  of t h e  atom w i t h  Z(r)  

being the  e f f ec t ive  nuclear charge, y = (1-6 1- 1'2 with 6 = ;; a = 137.037 

is the  Sommerfeld f i n e  s t ruc tu re  constant, and A assumes two values depending 

on the  relative d i rec t ion  of spin 

V 1 

1 ana angular momentum 2 :  

1 
2 A+ = + I i f  j = 11 + - 

1 A- = -(1+1) i f  j = L - - 2 .  

For L = 0 there is  only one equation and X = 0. 

The d i f f e r e n t i a l  s ca t t e r ing  cross sect ion is obtained from the  phase 

s h i f t s  na, nA, + rti of t h e  asymptotic form of t h e  p a r t i a l  waves FL, FA?, FA- 

w i t h  respect t o  t h e  solut ions of t h e  Eqs. (1) and ( 2 )  with vanishing V(r): 

i n  th? nonre l a t iv i s t i c  case and 

I(8)  = f (8)f*(8)  + g(0) e(8) with 

i n  t i :  relativistic case. 

'?'he total  sca t t e r ing  cross section Q i s  given by Q = 2n I(8)sinedB o r  I. 0 

4n by the  o p t i c a l  theorem: Q = I m  f ( 0 ) .  

two aspects:  ( a )  i n  t h e  first two terms, and (b) i n  the a 

represents t h e  r e l a t i v i s t i c  e f fec t  proper s ince  these two terms increase 

w i t h  increasing energy. 

Equation ( 2 )  d i f f e r s  from (1) i n  

2 term. Aspect (a)  

Regarding aspect ( b ) ,  t h e  terms i n  t h e  parenthesis 

2 



a r e  e i t h e r  independent of energy or their  moduli decrease w i t h  energy. 

Iiowe-. r the i r  contributions a re  i n  general small because they are of order 

z ( r )  has a first Only near r = 0,  where V(r) = - 2 a' c' n ighe r  order i n  a . 
order  pole, can the  terms become signif icant .  

r 
This i s  probably the  reason 

and 4 at l o w  electron energies as slow electrons do not penetrate very 

deeply i n t o  t h e  atom so that t h e i r  and Q are la rge ly  determined by t h e  

outer  p a r t  of t h e  atom. Although this  is true--as indicated by the small 

mpf' , .ude of t h e  par t ia l  waves near t h e  nucleus--the poten t ia l  near t he  

.ii!c.eus nas nevertheless considerable influence on t h e  phase aud amplitude 

:. jb ,.&ial waves (Fig. 1). For low electron energies (ym 1) and smal l  

r (~t1-1 z;) EQ. (2) simplif ies  t o  

n 

2 Lo 
I a -  r 

Z 2 0  2 + a  - r 

(0 sa). w i t h  y = 

This  equation shows t h a t  t h e  influence of t h e  last two terms which dis t inguish 

t h e  r e l a t i v i s t i c  from t h e  nonre la t iv i s t ic  case increases w i t h  (1) increasing 

Z 

t o  tlie sca t te r ing  cross sect ion,  i.e. wi th  decreasing electron energy. 

al:d (2) the increase of t h e  contributions of the p a r t i a l  waves with small L 
0 

To determine the  magnitude of t h e  influence of the  extra terms i n  t h e  

r e l a t i v i s t i c  equations, numerical calculations are  necessary. Such calcula- 

t i ons  have been performed f o r  H e ,  Kr, Cs, and Hg f o r  2, 20, and 200 eV e lectrons 

i n  order t o  obtain quant i ta t ive information on the  energy and Zo dependence of 

t h e  ,difference between nonre la t iv i s t ic  and r e l a t i v i s t i c  sca t te r ing  ' cross. 

3 



r ;ect iohS. 

ciL’:‘@rQ.Lial s ca t t e r ing  cross sections i n  Fig. 2. Most of the  calculations 

The t o t a l  s ca t t e r inc  cross sections are  shown i n  Table I, typ ica l  

c 

were p :-formed w i t h  a program written by ii3ckcl and modified by Holtzwarth 

and i4, .ir,ter which uses a simplified Numerov integrat ion method. 

UL.LUl. LJ w w  L~GCILSU UJ W C U J Z b L E j  uc Iuk6raiivri aiep size an6 by comparison 

1 The 

---.. - _ _ _  __^_ -L.--.--S .L-- -----:-- L1 .  

w i t h  ct-ita obtained with another extensively checked program using a Runge- 

Kuttn- smc-.’! *9 The a t d c  potent ia ls  used are taken o r  derived from 

data iven in t he  references i n  the tables together  with the  scat-  

t e r i n ,  cross sections.  I n  m o s t  cases t h e  numerical integrat ion w a s  terminated 

a t  r on the  data w a s  examined 

and found to be qua l i ta t ive ly  insignif icant  (Table 11). For K r  the  energy 

dependence of t he  contributions o f t h e  d i f fe ren t  partial waves was studied 

more carefu l ly  (Fig. 3). 

s5, but for Hg at 2 e V  t h e  influence of r max max 

The results i n  Table I c lear ly  ind ica te  t h a t  t h e  r e l a t i v i s t i c  effects 

(1) increase with t h e  nuclear charge Zo. I n  H e  they axe hardly notice- 

able, i n  Hg they are very large; 

(2) decrease with increasing electron energy. A t  200 eV they amount 

only t o  a f e w  percent i n  the  t o t a l  s ca t t e r ing  cross sect ion Q while at 2 eV 

they can change Q by an order of magnitude; 

(3) exist independent of the type of poten t ia l  used. The s t rong  var ia t ion  

of  t h e  sca t te r ing  cross sections at low energies with poten t ia l  which has been 

noted earlier (see e.g. Ref. 2, Fig. 4)  c lea r ly  demonstrates t h e  need f o r  

b e t t e r  wave functions ; 

(4) e i t h e r  increase o r  decrease t h e  t o t a l  s ca t t e r ing  cross sect ion.  

A better understanding of the  r e l a t i v i s t i c  e f f ec t s  i s  obtained by studying 

t h e  p a r t i a l  wave s h i f t s .  The numerical data  show t h a t  i n  all cases where t h e  

4 



r e l a t i v i s -  i c  effects are s ign i f i can t ,  both n+ and 9' a re  l a rge r  than nt 

(see e.g. Fig. 3). 
a a 

This means t h a t  t h e  A-dependent term which represents 

spin-orbit  coupling and which leads t o  t he  Mott-polarization of t h e  

electronz is smaller than t h e  o ther  te rns ,  so t h a t  t h e  r e l a t i v i s t i c  po ten t i a l  

is stror,ger than t h e  nonre l a t iv i s t i c  potent ia l .  

i n  whick r e l a t i v i s t i c  effects are s igni f icant  increases with Z and k : i n  

Kr only no and rl 

The number of p a r t i a l  waves 
2 

0 

d i f f e r  considerably at 2 and 20 eV;  i n  Cs no and nl at 2 e V ,  1 

and n at 20 e V  and 200 eV; i n  Hg t h e  e f f ec t s  are significant, up t o  nl, 
OO, 91 2 
n2 and n3 at 2, 20, and 200 e V  respectively. 

I n  the l i g h t  of these  results the agreement between the  nonre la t iv i s t ic  
\ 

theory and experiment which has been obtained previously by other  authors for 

t h e  scat.t;!ring of slow electrons by heavy atoms has t o  be considered as 

fort1iitoUS as t h e  agreement obtained fo r  l i g h t  atoms neglecting sp in  and 

ch:t:- 4 c0rr:lation.2 

Ili;, 

obT-:ilr, reli able sca t t e r ing  cross sections of heavy atoms f o r  slow e lec t rons ,  

not onlj. ,?..change and polar izat ion but a l s o  r e l a t i v i s t i c  e f f ec t s  have t o  be 

considerc i. 

This applies not only t o  t h e  o ld  work, e.g. on Cd and 
I *  

out a lso  t o  recent work on Cs. ''-I4 We conclude t h a t  i n  order t o  

We wmld l i k e  t o  thank D r .  Meister f o r  put t ing HUckel's IBM program at 

our disposal. 
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* . 
Table I. T o t a l  scat ter ing  cross sect ions  of He, Kr, Cs, 

and Hg for 2, 20, 200 eV electrons 
~ - - ~ -  L-- - ~ -  --------I - a -- -.. 1= -- -L 

Z A t o m  Potential Case 2 e V  20 e V  200 eV 
0 

2 H e  Hart ree-Fock re1 76 .o 8.20 752 3 

nonrel 76.1 8.20 ,753 

36 ~r Hartree-Fock re1 110. 31.7 13.2 4 

nonrel 108. 29.8 13.3 

55 cs Hartree-Fock-Slater re1 228. 65.8 20.7 

61.2 21.0 

5 

nonrel 286. 

re1 131. 17.6 15.8 6 Thomas-Fermi-Dirac 

nonrel ll9. 14.0 16.0 

80 Hg; Hartree-Fock-Slater re1 12.8 50.9 21.1 5 

nonrel 1.55 59.3 20.3 

relativistic Hartree 7 re1 84.1 15.1 27.2 

nonrel 19.5 23.1 26.7 

re1 99.9 9.82 28.3 6 Thomas-Fed-Dirac 

nonrel 393. 13.5 27.9 

re1 216. 79.9 30.8 

nonrel 328. 68. 31.1 

8 Thomas-Fermi 

_- __  .- = - -  - - 



Table 11. Influence of rmax on the to ta l  scattering 
cross section of Hg for 2 eV electrons 

- ----- - - -  -- _ - I - - _ _ - . _ _ - _ - - .  - ---- __ - - - - - I - -r3--- - . . - - . -- - 

C a s e  r = 4.7 8.2 14.0 max Potential 

re1 12.8 14.1 14.1 

nonrel 1.55 1.20 1.20 

re1 99.9 100. 100. 

nonrel 393. 393. 392 

5 Hartree-Fock-Slater 

6 Thomas-Fermi-Dirac 

--- - I ____- -- _- - -  - 

L 



r (ATOMIC UNITS)- 

F i g .  1. S-wave I o r t h e  scattering of 2 eV electrons by €&. 
The relativistic and nonrelativistic wave-functions as obtained 
by solving Eqs, (2) and (1) respectively for E = 0 are shown 
only for small r values. A t  rmax = 8.2 we obtain Fo , nonrel = 76.6 

= 42.9. and Fo, re1 
, 
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F i g .  2. 
electrons. 

Differential scattering cross section of Hg for 2 eV 
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F i q .  3,  
electrons by ICF. 

Partial wave phase shifts for the scattering of 2 - 20 eV 


